Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Fa Li, ${ }^{\text {a }}$ Dong-Sheng Liu, ${ }^{\text {a }}$ Qiu-Yan Luo ${ }^{\text {a }}$ and Chang-Cang Huang ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Jing Gang Shan College, Ji'an, Jiangxi 343009, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: cchuang@fzu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.200$
Data-to-parameter ratio $=10.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethylenediammonium bis(trihydrogen 1,2,4,5-benzenetetracarboxylate) dihydrate

Colourless crystals of the title compound, $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+}$.. $2 \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{8}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, were isolated from an aqueous solution. The basic structural unit consists of two trihydrogen 1,2,4,5benzenetetracarboxylate $\left(\mathrm{H}_{3} \mathrm{btec}^{-}\right)$anions, an ethylenediammonium cation and two solvent water molecules. The ethylenediammonium cation is centrosymmetric. The anion has a short intramolecular hydrogen bond of 2.427 (4) \AA involving a deprotonated carboxylate group as acceptor. A three-dimensional hydrogen-bonding network defines the crystal packing, and solvent water molecules and the cations occupy voids in the crystal structure.

Comment

Considerable attention has been paid to the exploration of the structures and properties of complexes or salts containing benzenepolycarboxylate ligands, due to their potential technological importance. In the case of 1,2,4,5-benzenetetracarboxylate (btec), the coordination chemistry is well represented, although there are not as many structures as have been reported for 1,3,5-benzenetricarboxylate. Among many reported compounds containing btec, most are complexes of transition metal ions, including manganese (Rochon \& Massarweh, 2000; Hu et al., 2001), iron (Chu et al., 2001), cobalt (Murugavel et al., 2002; Kumagai et al., 2002; Poleti \& Karanovic, 1989; Cheng et al., 2002), nickel (Murugavel et al., 2002; Rochon \& Massarweh, 2000; Poleti et al., 1988), copper (Zou et al., 1998; Cheng et al., 2001; Cao, Shi et al., 2002), silver (Jaber et al., 1997) and zinc (Robl, 1987; Rochon \& Massarweh, 2000). However, examples of compounds with main group metals such as calcium (Robl, 1988) and thallium (Day \& Luehrs, 1988) also exist. Recently, compounds of the rare earth elements were reported (Cao, Sun et al., 2002; Daiguebonne et al., 2003). The salts of 1,2,4,5-benzenetetracarboxylate containing organic ammonium cations are rare and may have interesting supramolecular chemistry.

(I)

In the title compound, (I), the 1,2,4,5-benzenetetracarboxylate exists as the $\mathrm{H}_{3} \mathrm{btec}^{-}$anion, i.e. with one $\mathrm{CO}_{2}{ }^{-}$ and three $\mathrm{CO}_{2} \mathrm{H}$ groups (Fig. 1, Table 1). The anion has a short intramolecular hydrogen bond between adjacent $\mathrm{CO}_{2}{ }^{-}$and

Figure 1
A view of the asymmetric unit of (I) plus the symmetry-related half of the cation, with atom labels and 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operator $(2-x,-1-y, 1-z)$.
$\mathrm{CO}_{2} \mathrm{H}$ groups (Table 2). The value observed is longer than those in $\mathrm{K}\left(\mathrm{H}_{3} \mathrm{btec}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Wang et al., 2004) and $\mathrm{Na}_{2}[\mathrm{Co}(-$ $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{btec}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad$ (Karanovic et al., 1999). In $\mathrm{K}\left(\mathrm{H}_{3} \mathrm{btec}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{O} \cdots \mathrm{O}$ distance of the intramolecular hydrogen bond is 2.39 (2) \AA and the angle between the two planes of adjacent carboxylate groups is $24.4(3)^{\circ}$. In $\mathrm{Na}_{2}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \text { btec }\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the corresponding $\mathrm{O} \cdots \mathrm{O}$ distance is 2.384 (3) A. Generally, one or more strong intramolecular hydrogen bonds can occur in H_{3} btec $^{-}$or H_{2} btec ${ }^{-}$ anions.

The crystal packing of (I) is determined by a three-dimensional hydrogen-bond network (Table 2, Fig. 2). Intermolecular hydrogen bonds connect ions as follows: anion \cdots anion $\quad(\mathrm{O} 5-\mathrm{H} \cdots \mathrm{O} 1 \quad$ and $\quad \mathrm{O} 7-\mathrm{H} \cdots \mathrm{O} 4)$, cation \cdots anion $(\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 6$ and $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 8)$, water$\cdots$ anion (O9-H.. O4 and $\mathrm{O} 9-\mathrm{H} \cdots \mathrm{O} 3$) and cation \cdots water ($\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 9$). Anions are interconnected by medium to strong hydrogen bonds (Table 2). The angle between the two planes of adjacent carboxylate groups $(\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{O} 2$ and $\mathrm{O} 3 / \mathrm{C} 8 /$ $\mathrm{O} 4)$ is $39.5(4)^{\circ}$. The ethylenediammonium cation is centrosymmetric.

Experimental

1,2,4,5-Benzenetetracarboxylic dianhydride $(0.5 \mathrm{mmol})$ and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ were dissolved in water $(15 \mathrm{ml})$. To this solution, ethylenediamine (0.5 mmol) was added dropwise with stirring, and the pH was adjusted to 3.0 with 2 M NaOH solution. Colourless crystals of (I) were obtained after several days at room temperature.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{8}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=604.44$	$D_{x}=1.687 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.118(2) \AA$	Cell parameters from 2246
$b=8.2266(17) \AA$	\quad reflections
$c=9.596(3) \AA$	$\mu=2.6-27.4^{\circ}$
$\alpha=83.50(1)^{\circ}$	$T=2.15 \mathrm{~mm}^{-1}$
$\beta=77.178(13)^{\circ}$	Block, colourless
$\gamma=72.395(10)^{\circ}$	$0.35 \times 0.35 \times 0.32 \mathrm{~mm}$
$V=594.9(2) \AA^{\circ}$	

Figure 2
The crystal packing of (I), viewed along the b axis. Dashed lines indicate hydrogen bonds.

Data collection

Rigaku R-AXIS RAPID
diffractometer
$\omega / 2 \theta$ scans
4366 measured reflections
2484 independent reflections 2074 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0722 P)^{2}\right. \\
&+2.3708 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.61 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.200$
$S=1.01$
2484 reflections
238 parameters

All H -atom parameters refined
Table 1
Selected bond lengths (\AA).

O5-C9	$1.292(4)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.394(5)$
O4-C8	$1.241(4)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.505(4)$
O7-C10	$1.302(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.385(4)$
O1-C7	$1.221(4)$	$\mathrm{C} 2-\mathrm{C} 8$	$1.513(4)$
O6-C9	$1.201(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.378(4)$
O3-C8	$1.254(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.379(4)$
O2-C7	$1.279(4)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.484(4)$
O2-H101	$1.03(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.383(4)$
O8-C10	$1.215(4)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.499(4)$
N1-C11	$1.484(5)$	$\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$1.501(7)$
C1-C2	$1.386(4)$		

Symmetry code: (i) $-x+2,-y-1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9-\mathrm{H} 301 \cdots \mathrm{O} 4^{\text {ii }}$	0.92 (6)	1.94 (6)	2.837 (5)	164 (5)
$\mathrm{O} 2-\mathrm{H} 101 \cdots \mathrm{O} 3$	1.03 (5)	1.40 (5)	2.427 (4)	171 (5)
$\mathrm{O} 7-\mathrm{H} 107 \cdots \mathrm{O} 4^{\text {iii }}$	0.95 (5)	1.62 (5)	2.554 (3)	169 (4)
$\mathrm{O} 5-\mathrm{H} 105 \cdots \mathrm{O} 1^{\text {iv }}$	0.92 (7)	1.71 (7)	2.610 (3)	165 (7)
$\mathrm{N} 1-\mathrm{H} 201 \cdots \mathrm{O}^{\text {v }}$	1.04 (6)	1.74 (6)	2.759 (4)	166 (5)
$\mathrm{N} 1-\mathrm{H} 203 \cdots \mathrm{O} 8^{\text {vi }}$	0.99 (6)	1.87 (6)	2.831 (4)	165 (5)
N1-H202 \cdots O 9	0.99 (6)	1.80 (6)	2.743 (5)	156 (5)
O9-H302 . ${ }^{\text {O }} 3$	0.73 (8)	2.20 (8)	2.825 (4)	145 (9)

[^1]
organic papers

The positions of all H atoms were found in difference Fourier maps and refined

Data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO; data reduction: RAPID AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1993); software used to prepare material for publication: SHELXL97-2 (Sheldrick,1997).

References

Cao, R., Shi, Q., Sun, D., Hong, M., Bi, W. \& Zhao, Y. (2002). Inorg. Chem. 41, 6161-6168.
Cao, R., Sun, D., Liang, Y., Hong, M. \& Shi, Q. (2002). Inorg. Chem. 41, 20872094.

Cheng, D, Feng, C., Hu, M., Zheng, Y., Xu, D. \& Xu, Y. (2001). J. Coord. Chem. 52, 245-251.
Cheng, D., Khan, M. A. \& Houser, R. P. (2002). Cryst. Growth Des. 2, 415-420. Chu, D., Xu, J., Duan, L., Wang, T., Tang, A. \& Ye, L. (2001). Eur. J. Inorg. Chem. 1135-1137
Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gerault, Y., Baux, C. \& Guillou, O. (2003). Cryst. Growth Des. 3, 1015-1020.

Day, C. S. \& Luehrs, D. C. (1988). Inorg. Chim. Acta, 142, 201-202.
Hu, M., Cheng, D., Liu, J. \& Xu, D. (2001). Coord. Chem. 53, 7-13.
Jaber, F., Charbonnier, F. \& Faure, R. (1997). J. Chem. Crystallogr. 27, 397400.

Karanovic, L., Poleti, D., Bogdanovic, G. A. \& Bire, A. S. (1999). Acta Cryst. C55, 911-913.
Kumagai, H., Kepert, C. J. \& Kurmoo, M. (2002). Inorg. Chem. 41, 3410-3422.
Murugavel, R., Krishnamurthy, D. \& Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34-39.
Poleti, D. \& Karanovic, L. (1989). Acta Cryst. C45, 1716-1718.
Poleti, D., Stojakovic, D. R., Prelesnik, B. V. \& Herak, R. M. (1988). Acta Cryst. C44, 242-245
Rigaku (1998). RAPID AUTO. PC version. Rigaku Corporation, Tokyo, Japan.
Robl, C. (1987). Z. Anorg. Allg. Chem. 554, 79-86
Robl, C. (1988). Z. Naturforsch. Teil B, 43, 993-997.
Rochon, F. D. \& Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190-198.
Sheldrick, G. M. (1993). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXL97-2. University of Göttingen, Germany
Wang, C., Chen, X., Huang, C., Zhang, H., Lian, Z \& Xiao, G. (2004). Acta Cryst. E60, m641-m643.
Zou, J., Liu, Q., Xu, Z., You, X. \& Huang, X. (1998). Polyhedron, 17, $1863-$ 1869.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $x, y, z-1$; (iv) $x-1, y+1, z$; (v) $x+1, y-1, z+1$; (vi) $-x+2,-y,-z$.

